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The statistical mechanical theory of dielectric polarization is extended to mixtures and applied to dilute solutions of polar 
molecules in non-polar solvents. The resulting equation, which differs significantly from that of Debye, permits unambigu­
ous experimental determination of a precisely defined effective dipole moment in solution. The relation between the solu­
tion moment and vacuum moment is discussed in terms of an ellipsoidal molecule—continuous solvent model, and it is 
shown that it is necessary to consider the induced polarization of both the polar molecule and surrounding solvent. The 
solvent effects calculated on the basis of this model differ from earlier results of others based on the same model, and are in 
qualitative agreement with experiment. Alternative ways of calculating the distortion polarization are discussed and it is 
concluded that the Clausius-Mossotti expression is, although not ideal, adequate for this purpose. 

I . Introduction 

I t has been known for a long time t ha t the electric 
dipole moments of polar molecules, as determined 
in dilute solutions in non-polar solvents, are incon­
sistent with moments resulting from gas phase stud­
ies. T h e gas measurements, whose interpreta­
tion is least ambiguous, are much more cumbersome 
than dilute solution studies, and are not applicable 
to as wide a range of polar molecules. I t would 
therefore be very helpful to have a reliable way of 
relating dielectric polarization in such solutions to 
the dipole moment of the solute molecules. In view 
of the extensive development of the statistical 
mechanical theory of dielectric polarization in pure 
polar subs tances , 1 - 4 it would seem to be worthwhile 
to a t t empt to develop a parallel theory for mixtures 
a t least one of whose components is polar. Such a 
theory would provide for the specific interaction of 
the individual polar molecules both with surround­
ing solvent and other polar solute molecules, as 
well as providing a proper accounting of the effect 
of the gross properties of the solution upon the lo­
cal field acting on each molecule. 

The present paper describes the formulation of 
the statistical mechanical theory of dielectric po­
larization in mixtures. Jus t as in the theory of sys­
tems composed of a single polar component, it is 
found tha t , even in the absence of specific short 
range forces between neighboring molecules, neither 
the Clausius-Mossotti nor the Onsager formulas1 

are applicable. Thus the well known and fre­
quently used Debye equation for the dielectric po­
larization of solutions is found to lead to erroneous 
results, even a t infinite dilution of the polar mole­
cules. However, the more accurate first-order ex­
pression does lead to the Debye result in dilute gas 
solutions, for which the dielectric constant is very 
nearly uni ty and all interactions between molecules 
become negligible. 

In the application of the theory to dilute solutions 
of polar molecules in a non-polar solvent, the vari­
ous contributions to the orientation dependent par t 
of the dielectric polarization can be separated into 
two par ts . The first part , which describes the in­
teraction between a polar molecule and surrounding 
solvent, can be regarded as causing a change in the 
effective dipole moment of the molecule, through 
polarization of both the polar molecule itself and 

(1) L. Onsager, T H I S JOURNAL 58, 1486 (1936). 
(2) J. G. Kirkwood, / . Chem. Phys., 7, 911 (1939). 
(3) F. E. Harris and B. J. Alder, ibid., 21 , 1031 (1953). 
(4) F. E. Harris, ibid., 23, 1663 (1955). 

the surrounding solvent. Even for spherical di­
polar molecules, this interaction will not vanish ex­
cept in dilute solutions in the gas phase. T h e sec­
ond interaction, t ha t between pairs of polar mole­
cules, becomes negligible in sufficiently dilute solu­
tions and can be treated by virial expansion meth­
ods. 

In the past considerable at tent ion has been paid 
to determining the relation between the effective 
dipole moment of a polar molecule and its perma­
nent moment as measured at? high dilution in the 
gas phase.6 Although these studies were handi­
capped by lack of knowledge of the exact relation­
ship between the dielectric constant and the ef­
fective moment, the main factors responsible for 
the "solvent effect" were a t least qualitatively 
recognized. We show here t h a t a consistent t reat­
ment of a simple model, in which the polar molecule 
is represented as a homogeneously polarized ellip­
soid in a continuous medium, predicts solvent ef­
fects in reasonable agreement with experiment, bu t 
a t variance with those calculated by earlier investi­
gators on the basis of the same model.6"8 Since 
our calculations involve no arbi t rary parameters 
and are completely non-empirical, we believe tha t 
when large deviations from the calculated solvent 
effects occur, they are characteristic of specific in­
teractions of a type not recognized by this simple 
model. 

In order to evaluate the usual experimental re­
sults, it may be necessary to calculate the distortion 
polarization of the solution from quantit ies de­
scriptive of the pure solute and solvent. An exami­
nation of the theory of distortion polarization in mix­
tures is carried out, and it is found t h a t in general 
the application of the Clausius-Mossotti equation 
leads to a sufficiently accurate result. However, 
fluctuations in the instantaneous induced moments 
of the molecules make it difficult to improve upon 
the first-order expression for the distortion polariza­
tion. 

II. Theory 

The bulk of the theory of dielectric polarization as 
presented for one component systems does not de­
pend upon the identity of all the molecules of the 

(5) For a review, see R. J- W. Le Fevre, "Dipole Moments," 
Methuen & Co., London, 1953, Chapter III . 

(6) K. Higasi, Sci. Papers Inst. Phys. Chem. Res. Tokyo, 28, 284 
(1936). 

(7) I. G. Ross and R. A. Sack, Proc. Phys. SoC. (.London), B63, 893 
(1950). 

(8) Th. G. Scholte, Rec. trav. Mm., 70, 50 (1951). 
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system. A basic equation of the theory, applicable 
to isotropic and non-ferroelectric media, is9 

e - 1 « , - l , / 3 \ / 3e \ / 4 r < J f , ' > \ . . 
e + 2 e„ + 2 + Ve + 2J\2e+ 1/V 9 7 * r ) ( ) 

where e is the static dielectric constant of the solu­
tion and ew is the dielectric constant at frequencies 
so high that molecular orientation does not have 
time to take place. The high frequency dielectric 
constant e» differs from the square of the optical 
index of refraction in that the former includes the 
effect of atomic polarization whereas the latter does 
not. V is the volume containing the molecules for 
which <Mo2> is to be calculated, k is Boltzmann's 
constant, and T the absolute temperature. 

The quantity <M0
2> is the statistical mechanical 

average, computed in the absence of an external ap­
plied electric field, of the square of the instantaneous 
electric dipole moment of a macroscopic portion of 
an infinite and boundless specimen of the dielectric 
whose properties are under consideration. Since 

the average moment, <Me>, vanishes under the 
conditions prescribed here, <M0

2> is seen to be a 
fluctuation quantity descriptive of the tendency of 
a sample to become polarized under the influence of 
an external force. Since <M0

2> is proportional to 
the volume of dielectric for which it is computed, 
eq. 1 does not depend upon the size or shape of the 
region selected for its computation. Both <M0

2> 
and («» — l)/(«« + 2) may be expressed in terms 
of parameters of the individual molecules of which 
the dielectric is composed. For a mixture, these ex­
pressions may be obtained by an obvious generali­
zation of the corresponding equations for one-com­
ponent systems. The resulting equations are exhib­
ited in Appendix 1. I t is important to note that 
the distortion polarization term, («» — l)/(e» + 
2), is not assumed by the theory to be the result ob­
tained by application of an approximate equation, 
but is, if not obtained from experiment, in principle 
to be calculated by the exact method first due to 
Kirkwood.10 However, in actual practice the dis­
tortion polarization may be estimated from a sim­
ple model for the mixture, as the uncertainty 
thereby introduced will be smaller than that in­
volved in the computation of the orientation polari­
zation. 

The orientation polarization term <Af0
2> can 

be simplified considerably in the important case of 
a dilute solution of polar molecules in non-polar 
solvent. Expanding the formula given in Appendix 
1, it is possible to separate the terms into those 
which involve but one polar molecule, those involv­
ing two, etc. The terms involving one polar mole­
cule describe the interaction between polar mole­
cules and solvent, and at high dilution constitute 
the major contribution to <M0

2>, while those 
terms involving larger numbers of polar molecules 
describe solute-solute interactions and only become 
important as the concentration of polar molecules 
is increased. We shall here consider only the in­
teraction between polar molecules and solvent. 
Further simplification may be obtained by intro­
ducing an effective dipole moment m, which will dif-

(9) Eq. 14 of reference 4. 
(10) J. G. Kirkwood, J. Chen. Phys., 4, 5«2 (1936). 

fer from the vacuum moment /x in that m will in­
clude the average induced moment of the molecule, 
plus the average net moment induced in the sur­
rounding solvent which has previously been as­
sumed to be boundless. As indicated in more de­
tail in Appendix 1, <Mo2> now assumes the form 

<Jtfo2> = JV2JB' + . . . (2) 

where iV2 is the number of polar solute molecules 
in the volume V. In eq. 2, the omitted terms de­
scribe only the effect of fluctuations in the average 
moment m. These fluctuation terms will usually 
be expected to be quite small relative to the indi­
cated result, because the main contribution to m 
is the non-fluctuating quantity n, and because the 
fluctuations arise from motions of only the non-po­
lar solvent molecules. Equation 2 indicates that 
<M0

2> may be written in the form of independent 
contributions from each polar solute molecule, and 
that the contribution of each such molecule in­
volves the entire moment associated with its pres­
ence, irrespective of the effect various parts of this 
total moment have upon the electric field at the po­
lar molecule. There is, then, no ambiguity arising 
from the distinction between the field exerting a 
torque on the polar molecule and the field tending 
to polarize it further in the direction of its perma­
nent moment. I t must be emphasized that (2) has 
been obtained without the necessity of introducing 
any particular model for the dielectric. 

Substitution of eq. 2 into eq. 1 leads to the main 
result of this section 
1^1I = « - - 1 + / _g_W_3«_ \ /4 , JV ,m ' \ 
e + 2 e„ + 2 T Ve + 2J\2t + 1/ V QVkT ) w 

It will be noticed that (3) differs from the Debye 
equation frequently applied to mixtures 

e - 1 = e „ - 1 4JrJV8Wt* 

e + 2 e„ + 2 + '9VkT W 

in that the contribution of the orientation polariza­
tion is altered by the factor [3/(e + 2)] [3e/(2e + 
1)]. This difference will result in an apparent de­
pendence of the dipole moment on the dielectric 
constant of the solvent, superimposed upon any 
simultaneously occurring real change in m. The 
dipole moment as computed by (3) will be identi­
cal with that computed by (4) in dilute gas, where 
e ~ I1 but m as computed from experimental data 
in common solvents, whose dielectric constants 
range from 2 to 2.5, will be from 5 to 12% higher 
when computed by (3) rather than by (4). 

HI. The Effective Dipole Moment in Solution 
Although the foregoing theory in principle leads 

to a definite value of the effective moment m in 
terms of molecular properties, in practice the ex­
pressions involved are too difficult to evaluate 
properly. The main difficulty is in the lack of rea­
sonably accurate distribution functions with which 
to describe the relative positions of molecules in 
the solution. It therefore remains of interest to 
introduce simple models for calculating the rela­
tionship between m and the permanent moment /x. 
Let us consider the simplest such model containing 
the most important features of a polar molecule in a 
dilute solution. Each polar molecule will be repre­
sented as a homogeneously polarized ellipsoid, and 
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the solution shall consist of such ellipsoids em­
bedded in a continuous medium with the dielectric 
properties of the solvent. The axes of the ellip-
: oids can be chosen so as to reproduce either the 
geometric shape of the polar molecule, or its opti­
cal anisotropy. Both these quantities describe 
ellipsoids of nearly the same shape. 

In accord with the definition of m, we see tha t 
two effects must be considered, namely, the polari­
zation of the polar molecule and of the surrounding 
solvent. Let us first consider the former. As was 
pointed out by Onsager,1 a molecule in a cavity 
in a dielectric will induce polarization in the sur­
rounding material which will, in turn, produce a 
"reaction field" within the cavity. Onsager ob­
tained an expression for the reaction field of a 
dipole in a. spherical cavity and, subsequently, 
Scholte11 extended the calculation to cavities of 
ellipsoidal shape. A homogeneously polarized el­
lipsoid of total moment tn',12 embedded in material 
of dielectric constant e, will induce a reduction field 

at the ellipsoid of magnitude/??*', where the reaction 
field fac to r / is given by 

3.4(1 -AXt- 1) 
3 abc{e + (1 - *)A] y ' 

The quantit ies a, b and c are the principal semi-axes 

of the ellipsoid, with the moment m' assumed to be 
in the direction of the axis described by a, with 

A = — C° — ffil 
2 Jo (s + a3)'/2(s + b*)'/>(s + cs)'A ( ' 

For a sphere, A assumes the value 1Z3, while, in 
general, smaller values of A are associated with 
ellipsoids elongated in the a direction. Ross and 
Sack7 have evaluated A as a function of alb and 
ale, and have summarized the results in convenient 
graphical form. 

Equation 5 permits computation of the total 
moment m' of the ellipsoidal molecule itself. For, 

a molecule of moment tn' will create a reaction field 

fm'. But the total moment tn' can be expressed as 

the sum of the permanent moment n' and an in­
duced moment a2ftn', where a2 is the mean polariza-
bility of a solute molecule. I t is consistent to use 
the mean polarizability here rather than t ha t in the 
dipole direction since in the present model aniso­
tropy is accounted for by the shape assumed for the 
solute molecules. Rearranging the relationship be­
tween m' and \± 

'"' = * (r~r/) (7) 

In evaluating (7), it is convenient to note t ha t since 
the solute molecular volume is 4 x abc/3, the factor 
a2la.be may be written P-DPt1 Mi, where P D is the 
molar distortion polarization, pa the density and Mi 
the molecular weight of the solute. This replace-

o n Th. G. Scholte, Physica, 15, 437 (194B). 
(12) The reaction field of a point dipole in a spheroidal cavity has 

been considered by F. Buckley and A. A. Maryott. J. Research Natl. 
Bur. Standards, 53, 229 (1954). They obtain a relatively complicated 
approximate result. Inasmuch as the point dipole model is not neces­
sarily more realistic than the extended polarization model we are using, 
we use Scholte's simpler result. 

ment involves the assumption t ha t the volume oc­
cupied by a solute molecule is approximately the 
same in both pure solute and solution. To this 
approximation, P D is given by 

*> = (r^i) - (8) 
\ e r o + 2 / 2 Pz 

where the subscript 2 refers to measurements on 
pure solute. 

We must now compute the net moment of the 
solvent surrounding an ellipsoidal molecule. By 
methods discussed in detail in Appendix 2, it can be 
shown tha t an ellipsoid of homogeneously polarized 
material of total moment m', embedded in a me­
dium of dielectric constant e, gives rise to a total 
moment (tn' plus the moment of the surroundings) 

The result (9), when combined with (7), leads to 
the following relation between ft and in 

( -^ \ (10) 
\e + (1 - e)A - -^fA(I - A)(e - I)J 

The result (10) differs from those obtained by 
previous investigators. Prior to Onsager's work,1 

attention was paid only to the polarization of the 
solvent around a polar molecule in dilute solution. 
The two most widely recognized studies of this 
effect were those of Frank,1 3 and of Higasi.6 Frank 
considered six solvent molecules around each sol­
ute, arranged as the nearest neighbors on a cubic 
lattice molecule. He then observed tha t if all these 
neighbors were present, their induced moments 
added up to a vanishing resultant, but tha t if one 
of the neighbors were missing, as would be the case 
if the solute were assumed to occupy more than one 
site, a non-vanishing net moment would result. 
Higasi considered the moment induced in a con­
t inuum by a dipole a t the center of an ellipsoidal 
cavity therein. However, he neglected the effect 
of the dielectric material upon the field inducing 
the polarization, and therefore obtained incorrect 
results. I t should be noticed tha t Ross and Sack's 
correction of Higasi's formula7 consisted merely of 
inserting a factor e, and therefore is also in error be­
cause the presence of the dielectric material does not 
merely require introduction of a constant scale 
factor in the expression for the field within it, bu t 
alters the field distribution materially due to the 
behavior at the boundary between cavity and di­
electric. 

Since Onsager's paper, computations of the ef­
fective moment have been made, neglecting the 
polarization of the solvent and including instead 
only the reaction field contribution.7 '11 These 
t reatments are apparently based on the premise 
tha t a sufficiently refined discussion of the type orig­
inally made by Onsager suffices to account for all 
contributions to the polarization of the solution. 
I t is difficult to decide exactly what contributions 
must be included to make this approach consistent, 
but fortunately no such decision is required, since 

(13) F. C. Frank, Proc. Roy. SoC. (London), A152, 171 0935). 

a2la.be
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the statistical mechanical approach is unambiguous. 
Let us now consider the quali tat ive, behavior 

implied by (10). Equat ion 10 contains two contri­
butions, the first of which, the reaction field polari­
zation, always tends to increase the total moment . 
Numerical calculations for solvents of dielectric 
constant near 2 indicate t ha t this contribution is 
not very sensitive to the molecular shape. On the 
other hand, the second contribution, t h a t of the po­
larization of the solvent, is strongly shape depend­
ent, tending to reduce the total moment for elon­
gated ellipsoids (A < 1Zs), and tending to increase 
the total moment for flattened ellipsoids (A > 
V3). This contribution is frequently larger than 
the first contribution and can account for both 
negative and positive solvent effects of a consider­
able range of magnitudes. For a spherical mole­
cule (A = V3), the net solvent polarization van­
ishes, so t ha t in t ha t important special case On-
sager's original contribution1 is identical with the 
present development. 

I t has been pointed out tha t the Onsager model 
for computing the total dipole moment of a mole­
cule is only appropriate to condensed phases, lead­
ing in fact to an incorrect dependence upon density 
in the limit of low densities.4 1 4 This failure arises 
from the fact tha t a t low densities the volume avail­
able per molecule is much larger than tha t of any 
reasonable cavity from which surrounding mole­
cules should be regarded as excluded. However, in 
the liquid solutions to which the foregoing remarks 
apply, there is little free volume and the Onsager 
model should be adequate. 

IV. Distortion Polarization 
In view of the multiplicity of methods suggested14 

for the computation of the distortion polarization 
term (e« — l)/(e=> + 2), it is desirable to discuss 
some aspects of the distortion polarization of solu­
tions. Ju s t as in the computation of the moment 
m, we have an intractable formal expression for the 
distortion polarization term. An examination of 
the various computations of the distortion polariza­
tion of pure substances indicates two approaches 
which appear to lead to different results in media of 
finite density. The first approach, due to Kirk-
wood,10 consists of the neglect of all fluctuations in 
the instantaneous moment of the molecules under 
the influence of an applied field. Kirkwood was 
able to show tha t in this limit, the distortion polari­
zation of an assembly of spherical molecules at­
tains the Clausius-Mossott i result 

- 1 
+ 2 

4 v Nc 
~3V~ ( H ) 

where a is the polarizability of the molecules and 
JV is the number of molecules in the volume V. 
Kirkwood also considered non-spherical molecules, 
and pointed out tha t (11) may be expected to re­
produce to within a few per cent, the distortion 
polarization of such systems. 

The second approach, due to Bottcher,1 4 is based 
on the observation t ha t the local field is not the 
same a t all points within a non-polar dielectric, and 
in particular will depend upon whether any mole-

(14) C J. K Bottcher, : ;Theory of Electric Polarization," Elsevier, 
Amsterdam, 1952, 

cules near the point under consideration are a t 
known positions. Since the consistent introduc­
tion of this idea into the theory requires considera­
tion of the fluctuations in dipole moments, it is dif­
ficult to improve the statistical calculations in a 
simple way. Bottcher proposes instead to consider 
each molecule of the dielectric to be in the center of 
a spherical cavity of a radius, a, equal to t ha t of the 
molecule. He is then able to derive the relation for 
spherical molecules16 

+ 2 
4TJV« 

3V 
9* 

(«„ +2) 2*. + 1 ;(< D GJ 
(12) 

Equat ion 12 reduces to (11) if the volume of the cav­
ity is chosen to be VfN rather than the molecular 
volume. Since the molecular volume is smaller 
than VfN, Bottcher 's formula is equivalent to re­
garding the fluctuations as causing an increase in 
the local field over its value calculated assuming 
their absence. The difference between (11) and 
(12) vanishes in both the limiting cases of low and 
high density, as a t low density, the local field effect 
is negligible, and a t high density, VfN approaches 
the molecular volume. Liquids are near this lat­
ter limit, so (11) may be used without serious error. 

We have just seen tha t a suitable continuum 
model corresponds to the neglect of fluctuations in 
a one component system of spherical molecules. 
However, similar considerations do not apply for 
mixtures, as in different relative positions in the 
solution the moments of the various molecules can 
vary much more than they can in pure substances. 
For, in a pure substance, a molecule always has 
identical molecules for neighbors, whereas in solu­
tion, the kinds as well as the positions of the neigh­
bors can vary. 

If the fluctuations in dipole moment are ignored, 
the statistical expression given in Appendix 1 for 
the distortion polarization may be reduced to 

where ct\ and ai are the polarizabilities of solvent 
and solute, and the Ni are the numbers of such 
molecules in the volume V. Equation 13 is the ex­
tension of the Clausius-Mossotti formula to solu­
tions. On the other hand, Bottcher 's procedure 
now leads to a result which always differs from (13). 
His formula may be expressed in the form 

1 4TT 

+ 2 3V 
with 

B i ( O 
(c. + 2)[. 

[-Y.«lgl(0 + -V2a2g2(e„)] (14) 

(15) 
2«E„ + 1 - (< ''] 

In (15), a* is the radius of a molecule designated by 
i. 

To see the relationship between the use of (14) 
and (12) as opposed to tha t of (13) and (11), let us 
substi tute into (13) the polarizabilities of solvent 
and solute by (11), and into (14) the polarizabilities 
as given by (12) Then, (13) becomes 

(15) Bottcher, ref. 14, pp. 205B. 
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«« + 2 N1" Ve1 + 2) + NJ U + 2,/ U d ; 

where TV1
0 is the number of molecules of i in a volume 

V of pure i, with high frequency dielectric constant 
e;. Similar t rea tment of (14) leads to the result 

«<» ~ 1 = M. (^ ~ l \ g i (^ ) , M. / ^ ~ 1\ &(«-) 
« . + 2 W U + 2^ g,{e,) "•" Ay U + 2^ 8,(6,) 

(14') 
In dilute solutions, c ~ ei, gi(«„) ~ gi(ei) and the 
distortion polarization due to the solvent will be the 
same according to both (13') and (14'). However, 
the distortion polarization of the solute will be al­
tered by' the approximate inclusion of the fluctua­
tions to the extent of the factor g2(«oo)/g2(«2). An 
examination of values obtainable for various values 
of the parameters determining g2 indicates t h a t this 
factor will only rarely alter the solute distortion 
polarization by more than about 5 % . Since («„ — 
l ) / ( e» + 2) is usually less than half of (e — I ) / 
(e + 2), this 5 % uncerta inty ordinarily corresponds 
to less than a 5 % uncertainty in m2, or of the order 
of 2 % in m itself. For this reason there appears to 
be no great objection to the use of (13'). We pre­
fer to use (13') inasmuch as it is the first approxi­
mation to an in principle exact theory, whereas 
(14') contains an approximation whose exact extent 
it is difficult to assess. 

Let us now pause to contrast the influence of 
fluctuations and anisotropy upon the distortion 
polarization with their influence upon the orienta­
tion polarization as computed in the preceding sec­
tion. Here we have found the fluctuations in the 
instantaneous dipole moment to be of considerable 
importance, while fluctuations in the effective di­
pole moment were dismissed as insignificant in 
computing the orientation polarization. The dif­
ference between the two cases is considerable. The 
entire distortion moment is induced, and therefore 
subject to fluctuations, while the bulk of the mo­
ment for orientation polarization is just the perma­
nent moment of the molecule. In addition, the 
main source of the fluctuations in distortion polari­
zation arises from the variety of environments a 
solvent molecule may experience, whereas the sol­
ute molecules, whose environments primarily de­
termine the effective moment m, all possess approxi­
mately equivalent environments a t high dilution. 
The role of anisotropy, on the other hand, is gov­
erned by different considerations. In the present 
section anisotropic contributions are small, be­
cause even though the molecules may be far from 
spherically symmetric, the polarization must be 
averaged over all orientations relative to the ap­
plied field. However, in computing m, the source 
of the polarizing field is the anisotropic molecule 
itself, and the anisotropy enters directly ra ther t han 
only appearing in an average with respect to orien­
tat ions which to first order nullifies its effect. 

V. Discussion 

Many measurements of the dielectric properties 
of dilute solutions of polar solute in non-polar sol­
vents have been reported.16 Wi th the aid of eqs. 3 

(16) For a relatively complete listing up to 1948, see L. G. Wesson,. 
"Tables of Electric Dipole Moments," Technology Press, Mass* 
Inst, of Technology, Cambridge, 1948. 

and 4, the values of the moment m computed from 
the Debye equation by the original authors can be 
converted into values computed according to the 
theory here presented. The values of m thereby 
obtained are, as pointed out elsewhere in the pa­
per, independent of the model used for the dielec­
tric. F rom dielectric polarization measurements 
in the gas phase, values of the permanent moment n 
have been obtained for many molecules by meth­
ods whose validity is affirmed in the present s tudy. 
For polar molecules which have been studied in 
both solution and gas, it is thus possible to obtain 
experimental values of m/p. By a comparison of 
these experimental values with theoretical values, 
calculated on the basis of a model, it is possible to 
ascertain to what extent the model reproduces the 
experimental situation. 

Values of m/n computed both from experimental 
da t a and from the ellipsoidal molecule—continuum 
solvent model of section I I I are exhibited in Table 
I . T h e values of the parameter A of the model 
were taken from calculations by Ross and Sack,7 

and by Buckingham and LeFevre.17 '18 The values 
of A were estimated for some of the solutes both 
from the geometrical shapes of the molecules and 
from their polarizability ellipsoids; in these cases 
the values of m/ti reported represent the average 
of values obtained by the two alternative proced­
ures. These values in most cases differed by less 
than 2 % , and in no case by more than 5 % . The 
values of m/ti reported as "observed" consist of 
the present authors ' evaluation of the da ta cited 
in the table. In some cases there remains an un­
certainty of several per cent, in the values of the 
solution moments. The molecules represented in 
the table cover a wide range of molecular shapes 
and polarizabilities, and for this reason consti tute 
a reasonable basis for evaluating a model predict­
ing solvent effects. 

The comparison between the experimental and 
predicted m/ix is qualitatively very gratifying, as 
the model reproduces the wide range of the ob­
served ratios. A more quant i ta t ive comparison, 
however, indicates t h a t discrepancies still remain, 
and in some cases these are considerably larger than 
either experimental error or uncertainty in the 
model parameter. The average discrepancy is 
somewhat less than twice as great as t ha t obtained 
by Buckingham and LeFevre17 by use of their most 
recently proposed empirical relation. I t is of in­
terest to note t ha t Buckingham and LeFevre were 
only able to achieve good correspondence with ex­
periment by introducing a parameter descriptive of 
the shape of the solute, so tha t their equation in­
cludes, in an empirical manner, the same funda­
mental quantit ies which were employed here. None 
of the empirical relations not incorporating such a 
shape-dependent parameter have been conspicu­
ously successful in correlating a wide range of da ta . 

The failure of the simple model of this paper to 
quant i ta t ively explain the solvent effect must of 
course be due to shortcomings of the model. Fur­
ther examination of Table I indicates tha t the 

(17) A. D. Buckingham and R. J. W. LeFevre, J. Chem. SoC, 1932 
(1952). 

(18) The parameter A is denoted by £ in references 7 and 17. 
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TABLE I 
THE RATIO m/n OF THE ELECTRIC MOMENT IN DILUTE SOLUTION, m, TO ITS VALUE IN GAS, /»"•* 

Solvent >• 
Dielectric constant of solvent >• 

Solute 

Methyl chloride 
Methyl bromide 
Nitromethane 
Acetonitrile 
Methylene chloride 
Chloroform 
Acetone 
Paraldehyde 
Ethyl ether 
Toluene 
Chlorobenzene 
Nitrobenzene 
Benzonitrile 
Trimethylamine 
Sulfur dioxide 

Hexane 
1.91 

Calcd. 

1.15 
1.17 
1.06 

1.01 
1.03 

Obsd. 

1.12 
1.25 
1.03 

0.98 
1.01 

Decalin 
2.16 

Calcd. 

1.17 
1.20 
1.07 

1.01 
1.03 

Obsd. 

1.11 
1.29 
1.02 

0.97 
1.03 

ecu 
2.23 

Calcd. 

1.08 
1.08 

1.00 
1.18 
1.21 
1.07 
1.42 
1.20 
1.00 
1.01 
1.03 
0.96 

Obsd. 

0.99 
1.00 

0.91 
1.12 
1.20 
1.08 
1.47 
1.24 
0.97 
1.00 
1.01 
0.98 

Benzene 
2.28 

Calcd. 

1.08 

1.05 
1.00 
1.18 
1.21 
1.07 
1.43 
1.20 
1.00 
1.01 
1.03 
0.96 
1.25 
1.12 

Obsd. 

1.02 

0.97 
0.91 
1.12 
1.21 
1.03 
1.40 
1.08 
1.00 
0.99 
1.01 
0.98 
1.45 
1.07 

Calcd. 

1.22 
1.25 
1.09 

1,01 
1.04 

CSi i 
2.64 

Obsd. 

1.08 
1.21 
1.04 

0.94 
0.98 

* Some of the observed ratios are at 20°, and some at 25°. The calculated ratios are in each case for the same temperature 
as the corresponding observed ratio. h An index to values for /i is provided by A. A. Maryott and F. Buckley, "Table of . . . 
Dipole Moments . . . in the Gaseous State," National Bureau of Standards Circular 537, U. S. Printing Office, Washington, 
D. C , 1953. An index to solution data is given by reference 16. Some more recent data are cited in reference 17. Other 
relevant work includes the following: C. J. LeFevre and R. J. W. LeFevre, Aust. J. Chem., 7, 33 (1945); R. J. W. LeFevre 
and D. A. A. S. N. Rao, ibid., 8, 140 (1955); N. Pilpel, THIS JOUKNAL, 77, 2949 (1955). 

model is most satisfactory for the symmetric sol­
vent molecules CCU, and relatively unsatisfactory 
for t he more asymmetric or optically anisotropic 
solvent molecules, particularly carbon disulfide. 
We have a t tempted some calculations of solvent-
solute interaction in which the discrete molecular 
s tructure of the solvent was recognized. These 
calculations indicated t ha t fairly reliable values of 
the distribution functions in solutions of non-spheri­
cal molecules would be required to provide mean­
ingful results. We therefore conclude t ha t it will 
not be a simple task to refine the model we have 
used here. 

VI. Practical Application 
T h e theory and solution model presented here 

suggest some specific indications with regard to the 
measurement of dipole moments in dilute solution. 
As discussed excellently by LeFevre,1 9 the quanti­
ties which should be measured are the dielectric 
constants of the solvent, ei, and of the solution, t, a t 
various mole fractions, Xi, Xz, of solvent and solute. 
Also needed are the densities of the same systems. 
B y using eq. 13 ' in conjunction with the funda­
mental equation of the theory, (3), one may ob­
tain the computationally useful form 

Note t ha t the extrapolated orientation polarization 
term involves the dielectric constant of the solvent 
only. The quant i ty P D can be writ ten in terms of 
an effective index of refraction of the pure solute 
as in eq. 8 (n2

eff = «»), or estimated by the methods 
discussed by LeFevre.1 9 Equat ion 17 can there­
fore be solved unambiguously for the effective di­
pole moment m. 

The relation of m to the vacuum moment n may 
be made by the use of eq. 10. In the evaluation of 
(10), e is the dielectric constant of the solvent, p2 

and Mz are the density and molecular weight of 
solute, and A is a geometrical parameter character­
izing the solute. The determination of A and the 
range of validity of eq. 10 have been discussed in 
preceding sections of the paper. 

Appendix 1. Extension of Statistical Mechanical 
Theory to Mixtures 

The statistical mechanical expressions for the 
quanti t ies <M0

2> and («» — l)/(«a> + 2), descrip­
tive of the orientation and distortion polarization, 
respectively, are of just the same form for a mixture 
as for a one-component system. The pert inent 
equations are4 

V 
,« + 2 s) - "• Ghn) - - [ > + 

+ 2y V2e + 1/V QkT 
where No is Avogadro's number, Vi is the molar vol­
ume of the solvent, and V t ha t of the solution. Po 
represents the molar distortion polarization of the so­
lute. I t may be seen from (16) t ha t if the quant i ty 

««-k ['(HH) -".feM 
is extrapolated to Xz = 0, it will approach the limit 

3 )G^)(^?')«" 

;Mo2> = 
« 

.«00 + V 

E 
:,n' = 0 

AT 

3 7 

i,k,i',k' 

E E <«•[(-
n = 0 I1A; 

•a)"']k'i 

a-TY]it 

' • [ ( -

fc-a<*> 

•a-T)"]ik-llk> 

(A-I) 

•2> (A-2) 

Lim Q(X2) = PD + (-
xt-*0 \ 1 + 2j\2n + 

(19) LeFevre, ref. B Chaps. I and II. 

V and k' refer to the individual 
molecules within the volume V, and all summations 
involving these indices are over all molecules of all 

kinds. T h e quantit ies AH and a ( i ) represent the 
permanent electric moment and polarizability 
tensor of molecule i, and i is an arbi t rary constant 
uni t vector. The angular brackets indicate statis­
tical mechanical averages, which are to be com­
puted using distribution functions for the system 
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in the absence of an applied electric field. The av­
erage (A-2) is to be computed for a spherical 
group of molecules in vacuo, bu t (A-I) is to be 
evaluated for a group of molecules embedded in an 
infinite and boundless dielectric of similar proper­
ties. These conditions, which arise in the develop­
ment of the theory, make (A-I) and (A-2) con­
verge rapidly when expanded in powers of a. The 
quant i ty (— a -T) is a tensor (in the space spanned 
by the molecule indices) whose i, k element is 
— a(i)-Tik. Tjk is itself a dyadic in ordinary space, 
and relates a dipole moment at the position of mole­
cule k to its field a t molecule i 

Tik = J - [ i - 3I"^] i 4= k 

= 0 i = k (A-3) 

where 1 is the uni t dyadic and r^ is the vector dis­
tance from the center of molecule i to t ha t of mole­
cule k. 

For a dilute solution of polar molecules in a non-
polar solvent, many of the terms of (A-I) van­
ish, and the remaining^ terms may be grouped ac­
cording to the number of polar molecules involved. 
Since all averages involving more than 1 polar 
molecule will vanish a t high dilution, we will by 
arranging terms according to the number of polar 
molecules they contain, have an expansion valid at 
low concentrations of solute. We shall introduce the 
following notat ion: The number of solvent and sol­
ute molecules in the sample will be represented by 
TVi and N% respectively. Specific solvent mole­
cules will be assigned numbers 1, 2, . . . as indices, 
while specific solute molecules will be designated by 
letters a, b, . . . Expanding (A-I), grouping similar 
terms wherever possible, and keeping only a few 
powers of a 

<M„2> = Nib*2 - 2JV,<X-T.i-a<l>-X > + 

2W1 <^T-Tara ( 1>-Tiaaw-Z> + 

2W1(AT1 - 1) <X-Tal-a<1>.T,2-aM.X> + 

A 'KMa-TaraO ' -aO ' - iV/^ + 

W1(TV1 - l )<Z-T a ra ' 1 »-a t 2 ' -T 2 a C> - • • • ) + 

W2(W2 - l)«Zw> ~ 2 < X T a b ' a ( b ) W > -

2W 1 <^T a l -«< 1 >X> + • • • ) + • • • (A-4) 

The term of (A-4) involving bu t one polar 
molecule may be further simplified by introducing 

an effective dipole moment m, defined such tha t m 
is the average moment of the solute molecule plus 
the average moment induced in the remainder of 
the dielectric. The formal definition of m therefore 
is 

~™ = ~i T1 J2 <Ma-[(-a-T)"W*> (A-5) 
M n = 0 i,k 

Equat ion (A-5) only defines m as the total mo­
ment when the polar molecules possess sufficient 

symmetry t ha t m and /x are parallel. In any event, 
the following discussion formally applies, bu t the 
fluctuations appearing in (A-7) will not be small 

if m and /J. are far from parallel. Expanding (A-5), 
keeping only terms involving bu t one polar 
molecule and not more than quadratic in the polar -
izabilities, one may find 

»T = -2 (M2 - N1<Z-a^-Tle.^Z> + 
M 2 

W1<^T-a(')-Tar«(1)-T,,-,ir> + N1(N1 -

l)<Z-a<'>-T12-a<2>-T2aX>+ • • •) (A-6) 

Squaring (A-6), and introducing the value of m2 

thereby obtained into the leading term of (A-4), 
one may reach the result, valid for dilute solutions, 

<ilfo2> = W2m2+ AW1(OW - 1) <XT a r a ( 1 ) - a t 2 ) -T 2 a X> + 

< ^ T a r a » ' - a ( 1 ) - T , a X > - N^-T^-a.™ -" > 
M 

< - a'-»-TuZ» + ••• (A-7) 
M 

All but the first term on the right-hand side of eq. 
(A-7) are fluctuations, the largest of which, ex­
plicitly exhibited there, are of second order in (a-
T). Since | a T j is usually considerably less than 
unity for most configurations of a pair of neighbor­
ing molecules, the leading term should be a good 
approximation to <MU

2>. 
The distortion polarization term (A-2) can be 

treated by the methods originally introduced by 
Kirkwood.10 Expanding (A-2) in powers of a, 
one obtains as the leading term the Clausius-Mos-
sotti result (13), with higher terms accounting for 
fluctuations and anisotropy. Since (A-2) deals 
with a spherical sample rather than the cylindrical 
sample chosen by Kirkwood, the averages involved 
here have different values than those of his paper, 
and should not be compared directly. 

Appendix 2. The Total Moment of a Dielectric 
Containing a Polarized Ellipsoid 

In Section I I I of the paper we require the total 
moment of an ellipsoid and surrounding dielectric 
when the ellipsoid is homogeneously polarized with 
a given total moment. The most direct way of 
making this calculation is to obtain the potential, 
\p, a t all points in space, and to integrate the 

polarization P = — ((e — 1)/4 ir) V^ over the region 
external to the ellipsoid. However, this integration 
requires manipulation of multiple elliptic integrals, 
so tha t a more indirect method which involves but 
one elliptic integral was actually employed. 

We shall first evaluate the total moment of a 
large sphere of dielectric containing the polarized 
ellipsoid and surrounded by vacuum. We then re­
late the moment of the spherical specimen to the 
moment of a similar specimen not possessing the 
spherical boundary. This procedure will enable us 
to deduce the total moment of an unbounded speci­
men from the coefficient of the dipole term in the 
potential outside a spherical specimen, thus avoid­
ing an integration of the polarization. Accordingly, 
consider the following boundary value problem. A 
shell of dielectric of permitt ivi ty e is bounded by an 
ellipsoid ot principal semi-axes a, b and c, and by a 
larger ellipsoid confocal with the smaller ellipsoid 
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and of sufficient size that it may be regarded as 
spherical. Introducing elliptical coordinates with 
the smaller ellipsoid as the reference surface for 
which the coordinate £ = 0, the larger ellipsoid will 
be the surface £ = S, E > > 1. The remainder of 
space will be of permittivity unity, and the inner 
ellipsoid will contain a uniform fixed polarization of 

magnitude p per unit volume, directed along the 
principal semi-axis of length a. A boundary con­
dition at £ = 0, then, is that e(b\f//dn) will suffer a 

discontinuity of magnitude —p-n, where n is a unit 
vector normal to the bounding surface. The re­
maining boundary conditions result from the con­
tinuity everywhere of $ ar>d its regularity at in­
finity, and continuity of e(jb\f>/i>n) at the outer 
boundary surface. 

The boundary value problem just described may 
be solved by standard methods.20 I t is found that 
the potential outside the specimen assumes the 
form, in the limit of large E 

/
* CO (J^ 

f (s + a')'/'(s + b*y/>(s + c»)'A ( A " 8 ) 

where the cartesian coordinate x has been intro­
duced in place of an equivalent expression in terms 
of the elliptical coordinates. The quantity A is the 

(20) See, for example, J. A. Stratton, "Electromagnetic Theory," 
McGraw-Hill Book Co., New York, N. Y., 1941, pp. 207ff. 

Introduction 
The activation energy for the reaction 

CH3+H2—>- CH1 + H (1) 
has been the subject of some disagreement. An­
derson and Taylor1 studied the photolysis of cad­
mium dimethyl in the presence of H2 and reported 
the activation energy for reaction (1) is 13 ± 2 
kcal. Since that time Davison and Burton2 have 
reported that Ei = 13 in agreement with Anderson 
and Taylor, while Steacie and his co-workers3-6 

have differed sharply, and contend that Ei « 10-11 
(1) R. D. Anderson and H. A. Taylor, J. Phys. Chem., 56, 498 

(19S2). 
(2) S. Davison and M. Burton, T H I S JOURNAL, 74, 2307 (1952). 
(3) T. G. Marjury and E. W. R. Steacie, Can. J. Chem., SO, 800 

(1952). 
(4) E. Whittle and E. W. R. Steacie, J. Chem. Phys., 21, 993 

(1953). 
(5) R. E. Rebbert and E. W. R. Steacie, Can. J. Chem., 32, 113 

(1954). 

integral defined by eq. 6 of the main text. The inte­
gral appearing in (A-8) can be shown to ap­
proach, for large £, the limiting value 2/V3, where r 
is the distance to the center of the ellipsoidal sys­
tem, so that (A-8) shows that the potential is that 
of a dipole of total moment 

- - ( ^ ) ( r n r V , H ) ( ^ ' ) <«> 
Since the volume of the small ellipsojd is 4*- abc/3, 
the last parenthesis of (A-9) is just the total mo­
ment m' of the ellipsoid of fixed polarization. 

Finally, we relate the moment m" of a macro­
scopic sphere, containing at its center a specified el­
lipsoid, to the moment w of a boundless dielectric 
containing the same ellipsoid. These quantities 
are connected by an equation first used by Kirk-
wood,2 and discussed subsequently by Harris and 
Alder.21 The result is 

- - m m -• ("O) 
Combining (A-10) with (A-9), and introducing m' 
as discussed already, one may find 

- = -'(?+ i)C-+^r^)) CA-") 
Reviewing the definitions of w, m' and A, we see 
that (A-Il) has the same meaning as eq. 9 of the 
main text. 

(21) See appendix 1 of reference 3. 
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kcal. The extent of the disagreement is illustrated 
in Table I, which summarizes the findings of vari­
ous workers on the reactions of methyl and deutero 
methyl radicals with H2 and D2. 

Davison and Burton studied the reaction 

CH3 + D2 > CH3D + D (2) 

by photolysis of acetone in the presence of D2 in 
the temperature range 150-450°. The Arrhenius 
plot of the CH4/CH3D ratio gives two straight lines 
which intersect at about 350°. The slope of the 
150-350° line gives an E% in good agreement with 
both Whittle and Steacie's4 and with Marjury and 
Steacie's3 values, while the slope of the 350-450° 
curve gives an E of 14 kcal. They accepted the 
higher value, suggesting that the lower value re­
sulted from hot radical effects. They pointed out 
that reaction (1) has an activation energy about 1 
kcal. lower than reaction (2), and therefore Ex « 
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The photolysis of acetone in the presence of deuterium has been investigated with a mercury resonance lamp and a medium 
pressure mercury arc with self reversed resonance line. The system has been studied from 140-450°, including the effect 
of surface, incident light intensity, helium and pressure. The activation energy for the abstraction of D from D2 by a 
methyl radical was found to be 11.9 kcal. The experiments with 2537 A. radiation showed greatly increased relative amounts 
of CH3D formed from mercury sensitized production of D atoms, followed by a reaction taking place a t least partly on 
the wall between CH3 and D atoms to form CH3D. 


